P91(10Cr9Mo1VNbN)
P91钢相当于国标10Cr9Mo1VNbN,不仅具有高的抗氧化性能和抗高温蒸汽腐蚀性能,而且还具有良好的冲击韧性和高而稳定的持久塑性及热强性能。在使用温度低于620℃时,其许用应力高于奥氏体不锈钢。在550℃以上,推荐的设计许用应力约为T9和2.25Cr-1Mo钢的两倍。不仅具有高的抗氧化性能和抗高温蒸汽腐蚀性能,而且还具有良好的冲击韧性和高而稳定的持久塑性及热强性能。在使用温度低于620℃时,其许用应力高于奥氏体不锈钢。在550℃以上,推荐的设计许用应力约为T9和2.25Cr-1Mo钢的两倍。
应用
可作为亚临界、超临界锅炉壁温≤625℃的高温过热器、再热器用钢管,以及壁温≤600℃高温集箱和蒸汽管道,也可作为核电热交换器以及石油裂化装置炉管。
标准:ASTM A213 ASTM A335
抗拉强度:≥585(MPa)
屈服强度:≥415(MPa)
伸 长 率:≥20(%)
P91钢是美国国立像树岭实验室和美国燃烧工程公司冶金材料实验室合作研制的新型马氏体耐热钢。它是在9Cr1MoV钢的基础上降低含碳量,严格限制硫、磷的含量,添加少量的钒、铌元素进行合金化。根据ASTM213/A213M-85C,P91钢的化学成份见表1。
与P91钢对应的德国钢号为X10CrMoVNNb91,日本钢号为HCM95,法国则为TUZ10CDVNb0901。
表1 P91钢的
化学成份%
元素 含量
C 0.08-0.12
Mn 0.30-0.60
P ≤0.02
S ≤0.01
Si 0.20-0.50
Cr 8.00-9.50
Mo 0.85-1.05
V 0.18-0.25
Nb 0.06-0.10
N 0.03-0.07
Ni ≤0.40
P91钢中各合金元素分别起到固溶强化、弥散强化和提高钢的抗氧化性、抗腐蚀性能,具体分析如下。
①碳是钢中固溶强化作用最明显的元素,随含碳量的增加,钢的短时强度上升,塑性、韧性下降,对P91这类马氏体钢而言,含碳量的上升会加快碳化物球化和聚集速度,加速合金元素的再分配,降低钢的焊接性、耐蚀性和抗氧化性,故耐热钢一般都希望降低含碳量,但含碳太低,钢的强度将降低。P91钢与12Cr1MoV钢相比,含碳量降低20%,这是综合考虑上述因素的影响而决定的。
②P91钢中含微量氮,氮的作用体现在两个方面。一方面起固溶强化作用,常温下氮在钢中的溶解度很小,P91钢焊后热影响区在焊接加热和焊后热处理过程中,将先后出现VN的固溶和析出过程:焊接加热时热影响区内已形成的奥氏体组织由于VN的溶入,氮含量增加,此后常温组织中的过饱和程度提高,在随后的焊后热处理中有细小的VN析出,这增加了组织稳定性,提高了热影响区的持久强度值。另一方面,P91钢中还含有少量A1,氮能与其形成A1N,A1N在1 100℃以上才大量溶入基体,在较低温度下又重新析出,能起到较好的弥散强化效果。
③加入铬主要是提高耐热钢的抗氧化性、抗腐蚀能力,含铬量小于5%时,600℃开始剧烈氧化,而含铬量达5%时就具有良好的抗氧化性。12Cr1MoV钢在580℃以下具有良好的抗氧化性,腐蚀深度为0.05 mm/a,600℃时性能开始变差,腐蚀深度为0.13 mm/a。P91含铬量提高到9%左右,使用温度能达到650℃,主要措施就是使基体中溶有更多的铬。
④钒与铌都是强碳化物形成元素,加入后能与碳形成细小而稳定的合金碳化物,有很强的弥散强化效果。
⑤加入钼主要是为了提高钢的热强性,起到固溶强化的作用。
热处理工艺
P91的最终热处理为正火+高温回火,正火温度为1040℃,保温时间不少于10 min,回火温度为730~780℃,保温时间不少于1h,最终热处理后的组织为回火马氏体
。
机械性能
P91钢的常温抗拉强度≥585 MPa,常温屈服强度≥415 MPa,硬度≤250 HB,伸长率(50 mm标距的标准圆形试样)≥20%,许用应力值[σ]650℃=30 MPa。焊接性能
可见P91的焊接性较差。 按照国际焊接学会推荐的碳当量公式算得P91的碳当量为
3 P91焊接时存在的问题
3.1 热影响区淬硬组织的产生
从图1可以看出,P91的临界冷却速度低,奥氏体稳定性很大,冷却时不易发生正常的珠光体转变,从而冷却到较低温度时发生了马氏体转变。正由于此,P91的淬硬和冷裂倾向很大。
图1 P91钢的连续冷却曲线
由于热影响区的各种组织具有不同的密度、膨胀系数和不同的晶格形式,在加热和冷却过程中必然会伴有不同的体积膨胀和收缩;另一方面,由于焊接加热具有不均匀和温度高的特点,故而P91焊接接头内部应力很大。
对于P91,奥氏体十分稳定,要冷却到较低温度(约400℃)才能变为马氏体。粗大的马氏体组织脆而硬,接头又处在复杂应力状态下。同时,焊缝冷却过程中氢由焊缝向近缝区扩散,氢的存在促使了马氏体脆化,其综合作用的结果,很容易在淬硬区产生冷裂纹。
3.2 热影响区晶粒长大
焊接热循环对焊接头热影响区的晶粒长大有重大的影响,特别是紧邻加热温度达到最高的熔合区。当冷却速度较小时,在焊接热影响区会出现粗大的块状铁素体和碳化物组织,使钢材的塑性明显下降;冷却速度大时,由于产生了粗大的马氏体组织,也会使焊接接头塑性下降。
3.3 软化层的产生
P91钢在调质状态下焊接,热影响区产生软化层不可避免,而且比珠光体耐热钢的软化更为严重。当用加热和冷却速度均较缓慢的规范时,软化程度较大。另外,软化层的宽度和它离熔合线的距离,不仅与焊接的加热条件及特点有关,还与预热、焊后热处理等有关。哈尔滨锅炉厂曾做过试验得出P91焊接热影响区硬度曲线,见图2。
图2 P91焊接热影响区硬度曲线
①730℃回火;②750℃回火
由图2可以看出,P91钢焊缝热影响区产生的软化现象比较严重,而且接头的回火温度越高,软化程度越严重,接头强度利用系数大大下降。
3.4 应力腐蚀裂纹
P91钢在焊后热处理之前,冷却温度一般不低于100℃,如果在室温下冷却,而环境又比较潮湿时,容易出现应力腐蚀裂纹。德国规定:在焊后热处理之前必须冷却至150℃以下。在工件较厚、有角焊缝存在及几何尺寸不好的情况下,冷却温度不低于100℃。如果在室温下冷却,严禁潮湿,否则容易产生应力腐蚀裂纹。
P91钢的Ms点约为400℃,预热温度一般选在200~250℃。预热温度不能太高,否则接头冷却速度降低,可能在焊接接头中引起晶界处碳化物析出和形成铁素体组织,从而大大降低该钢材焊接接头在室温时的冲击韧性。预热温度的下限从哈尔滨锅炉厂所做过的插销试验可得到很好的说明。 4.1 预热温度的选择
插销试棒采用P91钢,直径8 mm,深0.5 mm,底板采用13CrMo钢,厚20 mm,试验在不预热、预热150℃、预热200℃、预热250℃条件下进行。焊条采用J707。焊接电流为165~170 A,电弧电压为21~267 V.